
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2017-05-01

Robust Object Tracking: A Path-Planning
Approach
Bryant Eldon Chandler
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Chandler, Bryant Eldon, "Robust Object Tracking: A Path-Planning Approach" (2017). All Theses and Dissertations. 6540.
https://scholarsarchive.byu.edu/etd/6540

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6540?utm_source=scholarsarchive.byu.edu%2Fetd%2F6540&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Robust Object Tracking: A Path-Planning Approach

Bryant Eldon Chandler

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael A. Goodrich, Chair
Jacob W. Crandall
Seth R. Holladay

Department of Computer Science

Brigham Young University

Copyright c© 2017 Bryant Eldon Chandler

All Rights Reserved

www.manaraa.com

ABSTRACT

Robust Object Tracking: A Path-Planning Approach

Bryant Eldon Chandler
Department of Computer Science, BYU

Master of Science

When attempting to follow ground-based moving objects (hereafter referred to as
“waldos”) using an unmanned air vehicle (UAV), occlusion can become a significant problem
for computer vision algorithms designed to track the object. When a waldo is occluded,
the computer vision algorithm loses the track and the UAV’s ability to predict movement
degrades. We propose a path-planning and replanning method that moves a UAV to a location
that maximizes the important waldos that can be seen while accounting for occlusion, and
attempts to maximize the area it can see during travel. The proposed work moves beyond
state-of-the-art algorithms designed to follow a single waldo while accounting for occlusion to
enable tracking multiple prioritized waldos.

Keywords: path-planning, rapid replanning, RRT*, FMT*, ORRT*, OFMT*, target tracking

www.manaraa.com

ACKNOWLEDGMENTS

This work was funded by the Center for Unmanned Aircraft Systems (C-UAS),

a National Science Foundation-sponsored industry/university cooperative research center

(I/UCRC) under NSF Award No. IIP-1161036 along with significant contributions from

C-UAS industry members.

www.manaraa.com

Table of Contents

List of Figures vi

1 Introduction 1

2 Related Work 4

2.1 Discrete Planning . 4

2.2 UAV Motion Planning . 5

2.3 Sampling-Based Planning . 6

2.4 Visual Multi-Target Tracking . 8

2.5 Waldo Following . 8

3 Online RRT* and Online FMT*: Rapid Replanning with Dynamic Cost 10

3.1 INTRODUCTION . 10

3.2 RELATED WORK . 11

3.3 APPROACH . 13

3.3.1 Algorithm . 13

3.3.2 Start-Point Moving . 14

3.3.3 Online Sampling and Rewiring . 16

3.3.4 Online Pruning . 18

3.4 VALIDATION . 19

3.4.1 Computational Efficiency: Algorithm Comparison 19

3.4.2 Memory Efficiency . 20

3.4.3 Online Pruning . 21

iv

www.manaraa.com

3.4.4 Support for Multiple Objectives . 22

3.4.5 Time-Varying Cost . 22

3.5 SUMMARY AND FUTURE WORK . 24

4 End-Point Selection 26

4.1 Selection Method . 26

4.2 Future Prediction . 28

4.3 Results . 29

5 Cost Function 32

5.1 Maximizing Visible Area . 33

5.2 Results . 34

6 Conclusion and Future Work 36

6.1 Conclusion . 36

6.2 Future Work . 37

References 39

v

www.manaraa.com

List of Figures

3.1 Need to replan to new goal after the robot has moved 13

3.2 Moving start point . 17

3.3 Online rewiring . 18

3.4 Moving the start point adds nodes, which eventually becomes a significant

problem . 19

3.5 Percentage of 30 s run time used for path computation 20

3.6 Online pruning . 21

3.7 A tree and path created using a cost function that attempts to avoid the pink

and blue circles . 23

3.8 Anytime percent absolute difference from truth path cost with time-varying

cost function . 24

4.1 End-point selection . 27

4.2 Prediction methods . 28

4.3 End-point selection scored for different prediction methods 31

5.1 Scores with different cost functions . 35

vi

www.manaraa.com

Chapter 1

Introduction

Tracking moving objects (“waldos”) on the ground from a UAV is useful for a number

of applications. The obvious application is for aerial reconnaissance in military and police

operations. In those situations it might be used to monitor terrorist or gang activity. Another

application is in search and rescue. UAVs can be used to search for a missing person,

complementing search from people on foot or in a manned aircraft because UAVs are able

to move much lower than manned aircraft and more quickly than searchers on foot. There

are less obvious applications including filming footage for TV or cinema, herding animals,

or crowd monitoring. These less obvious applications benefit from the same advantages

gained in military, police, and search and rescue operations. All applications would benefit

from having path-planning and replanning that helps a human expert focus on performing a

mission rather than controlling a UAV.

Tracking waldos with a UAV requires significant time, attention, cognitive workload,

and expertise from a human (see [5] for example). Because of these manpower demands,

UAVs can be difficult to deploy and use in many practical applications. Automating some of

the tasks can reduce human workload and result in a more functional system. To potentially

reduce the cognitive workload on humans, we chose to look at automating waldo following.

Algorithms exist for making a UAV autonomously follow a waldo (or even multiple waldos)

[24, 34], but there are still many holes to be filled before it can be done robustly.

This thesis presents an algorithm that plans and replans a path for a UAV such that

it maximizes the ability to persistently track high importance waldos while accounting for

1

www.manaraa.com

occlusion. The problem is solved in several parts: (a) path end-points are chosen based

on current knowledge about the waldos and predictions about their future locations, (b)

paths are planned using a cost function that penalizes for putting the UAV in locations

that don’t provide good visibility, and (c) path-planning algorithms are presented which

afford rapidly replanning to new end-points while attempting to match the aforementioned

cost function. The usefulness of the algorithms presented is validated in the Chapters that

follow. The end-point selection methods and cost function are evaluated using a score derived

from the amount of time waldos were inside the view radius scaled by their importance.

path-planning algorithms are validated for computational efficiency, and memory efficiency,

as well as optimality with respect to this cost function.

The path-planning algorithms presented have applications beyond the problem that

this thesis aims to solve. They provide rapid replanning for new path end-points and

adaptation to time-varying cost with relatively little overhead. These features apply to any

application where either a robot needs to change its end-point frequently or travel costs are

dynamic rather than static.

This effort is part of a more complete tracking project that aims to perform robust multi-

object tracking from multiple UAVs. The project uses Recursive-RANSAC (R-RANSAC)

to visually track waldos and maintain track persistence [26]. The role of path-planning is

to place the UAV such that the R-RANSAC algorithm has the best chance of success in

tracking waldos. Future work should extend the presented work to enable multiple UAVs to

prioritize and position themselves cooperatively.

This thesis is organized in chapters for each portion of the solution. Chapter 2 discusses

related work. Chapter 3 is a conference paper currently under review for IROS which presents

the algorithms for rapid replanning with dynamic cost. Chapter 4 discusses the approach

for selecting path-planning end-points at each replanning time step. Chapter 5 presents an

attempted approach for avoiding tracking-loss due to occlusion. Finally, Chapter 6 presents

2

www.manaraa.com

conclusions and possible avenues for future work. Validations for the various components of

our algorithm are presented and discussed in their respective chapters.

3

www.manaraa.com

Chapter 2

Related Work

This chapter explores four areas of related research: discrete-based planning, sampling-

based planning, visual multi-target tracking, and waldo-following.

2.1 Discrete Planning

There are many algorithms in the literature for discrete multi-objective path-planning, one

of the most notable being A* [33], which is an alternative to Dijkstra’s algorithm [4] when

the goal is known. These algorithms build a graph in a configuration space that has been

discretized into a grid with known available transitions between grid cells. They then perform

search on those graphs. This allows the algorithms to operate quickly, but discretization

reduces the likelihood of finding a truly optimal solution; the algorithms might not find paths

through narrow passages and the location of grid cells might keep it from finding an optimal

path. D* [30], AD* [25], and D* Lite [19] expand on Dijkstra and A* to get dynamic graphs

that can handle unexpected obstacles, but they suffer from the same discretization issues.

Moving Target Search (MTS) [11] is a discrete path-planning algorithm that is geared

toward the application of reaching a moving target. Its main claim is that the searcher

will reach the target eventually, as long as the searcher moves faster than the target. Its

underlying planning algorithm is LRTA* [20], which is a discrete planning approach that

learns a heuristic as it travels. We choose not to use MTS for our application because of

discretization issues, and the fact that it is designed for finding a single waldo.

4

www.manaraa.com

2.2 UAV Motion Planning

Another element of planning for UAVs is motion planning, which is planning that accounts for

the dynamics of the vehicle. There are several algorithms that plan paths to search for and

follow targets with a focus on vehicle dynamics; we list only a few representative algorithms.

The first motion-planning algorithm [9] supplements particle filtering with search trees to

plan motion. The algorithm’s combination of filtering and discrete search is innovative, but it

focuses on searching and doesn’t anticipate target movement and planning paths to track a

target once it has been found. Rather, the algorithm implicitly follows a target because once

the target has been seen, the search probability for its actual location will be high, causing

the discrete search to plan paths to reach the vehicle.

The second motion-planning algorithm tracks a single target with multiple UAVs [18].

It attempts to maximize the visibility of a target while a tracking vehicle circles the target

by picking the center of a minimum turning radius circle. This motion-planning algorithm

can include multiple UAVs as follows: if more than one UAV is available, the algorithm picks

an optimal angular spacing of UAVs all moving on the same circle. This motion-planning

algorithm was expanded in [17] by an algorithm that clusters many targets into large groups

to be tracked by multiple UAVs. Once the groups have been formed, the revised algorithm

uses motion planning from [18] to fly the UAVs in a minimum circular path.

The third motion-planning algorithm [10] combines discrete search and motion-

planning by using LRTA* to visit targets optimally. The technique plans a path that

minimizes the path length to see a set of targets using LRTA* and Dubins curves. The

approach is interesting because it leverages more conventional path-planning, while still

catering to fixed wing dynamics. We draw inspiration from this approach, but we cannot

naively adopt the approach because we are interested in following targets rather than seeing

them a single time.

5

www.manaraa.com

2.3 Sampling-Based Planning

Sampling-based path-planning helps solve some of the problems created by discretizing the

configuration space. Sampling-based path-planning has been justified with several arguments:

it is effective for path planning in configuration spaces with complex obstacles [22], it can

quickly find sub-optimal solutions to complex problems [6], the algorithms are relatively easy

to implement [31], etc. There is room for discussion in support of or in opposition to these

assertions, but even a cursory review of the literature reveals that sampling-based algorithms

are being successfully used in many areas. RRT [21] and PRM [16] are classic algorithms in

the area, from which many sampling-based algorithms are derived. RRT builds a rapidly

exploring tree from random sampling and a cost function that can combine multiple objectives.

Once the tree is built, one simply needs to select an end-point and trace back up the tree to

the root, which is located at the start point. PRM builds a graph from randomly sampled

points, and then paths are queried using another algorithm such as A*. The time complexity

for constructing search trees is the same for both RRT and PRM, but RRT is O(n) in query

and space complexity, whereas PRM is O(nlog(n)) in both query and space complexity [14];

the reduced query time and memory requirements generally make RRT the favorite of the

two. Additionally, RRT includes the ability to plan kinodynamically (accounting for vehicle

dynamics and velocity) [21], which is a great benefit to any real application.

RRT has been expanded to RRT* [14], which guarantees asymptotic optimality

as more points are sampled by rewiring the existing tree to get path cost reductions. An

advantage of this approach is that a sub-optimal path can be found quickly with a sparse

tree. This thesis assumes that the algorithm will run for a long time, so it is more important

to generate a dense (and therefore closer to optimal) tree, than to find a single path quickly.

FMT* [13] constructs a tree with the same structure and optimality guarantees as RRT*,

but it builds out from the start point densely. It is able to complete a dense and optimal

tree more quickly than RRT because it doesn’t use rewiring. Additionally, the final node

6

www.manaraa.com

distribution has been subjectively observed to be more uniform for the same number of nodes,

which leads to a tree that fills the configuration space more fully than RRT*.

There have been many improvements proposed to RRT*, but a particularly interesting

one is Informed RRT* [8]. This algorithm performs standard RRT* until a path is found,

then it fits an ellipse to the found path and only samples within that ellipse. This is possible

because any path that beats the current path for cost must fall within that ellipse. Informed

RRT* is very effective at reducing the number of iterations required to find the asymptotically

optimal path, but it only works when searching for a shortest path. Furthermore, the tree

created by Informed RRT* is only dense near the optimal path, which makes it less useful

for tree reuse.

Several solutions have been developed to allow RRT* to function in an online/anytime

fashion. Anytime RRT* [15] takes advantage of the time it takes for a robot to travel a path

by improving the path during travel. It does this by pruning the part of the tree that has

already been traversed and continuing to sample. The Anytime RRT* algorithm doesn’t meet

the requirements of this thesis because it destroys part of the tree as the robot moves; the

application in this paper requires replanning, and replanning benefits from reusing information

that could be destroyed by the Anytime RRT* algorithm. Another notable online solution is

RRTX [1], which switches the start and end-points, so that the end-point is now fixed and

enables the algorithm to find optimal paths to all other points in the space. Thus, when the

start point moves, it can simply use one of the other paths. When obstacle conditions change,

a cascading rewire is performed to update the tree. This is a good approach to being online,

but it still requires one of the points to be fixed, which isn’t the case for the application in

this thesis. This thesis requires an algorithm that can adapt when both the start-point and

end-point move as the UAV and waldos both move; it is less concerned about unexpected

obstacles.

The sampling-based planning approaches depend on uniform random sampling, but

random sampling can be slow to converge because it is prone to clumping and open areas.

7

www.manaraa.com

Uniformity isn’t reached until a large number of points have been sampled. Because of these

weaknesses, deterministic sampling methods, such as lattices and Halton sequences have been

explored [2][12] and found to make promising improvements to convergence rates for PRM.

This improvement might be especially beneficial in the effort to use RRT* in an anytime

fashion, and should be explored in future work.

2.4 Visual Multi-Target Tracking

There are a number of well known visual multi-target tracking (MTT) algorithms in use.

These include MHT [29], JPDA [7], MCMCDA [27], and GM-PHD [32]. A recently proposed

MTT algorithm is Recursive-RANSAC [26], which is a visual MTT algorithm developed at

Brigham Young University. Among its strengths are its ability to maintain track continuity

through crossing tracks, infer the number of tracks instead of knowing them upfront, and

reasonably quick execution time per frame. Its weaknesses are that the waldos need to be

moving, and it is limited in its ability to reacquire waldos that go out of frame whether that’s

due to occlusion or limited field of view. A well-planned path can limit the number of times

one of those weaknesses is encountered, thus helping the vision algorithm have more robust

performance.

2.5 Waldo Following

Following and tracking waldos requires that the target stay in frame, or be brought back into

frame quickly when it leaves. If future waldo positions can be predicted, then the UAV can

make more informed decisions about where to fly.

One algorithm that performs waldo following uses probabilistic methods to combine

the data between both UAVs and unmanned ground vehicles in an attempt to search for, and

track, a single moving target [34]. Another algorithm [24] seeks to position the observing

agent so that it maximizes the minimum time it would take for the target to leave the frame.

8

www.manaraa.com

The approach wasn’t feasible for a lookahead of more than one timestep when the paper was

written, but a similar approach may be more tractable on modern hardware.

In order to accurately track waldos, an algorithm needs to be able to predict their

motion. In Reference [3], the authors chose to fuse a learned sequence model and a kinematic

motion model to predict future waldo location. Human motion prediction has been studied [35],

with agent-based, entity-based, and flow-based models being a few of the main models being

researched. Agent-based and entity-based models might be of particular interest to the

application in this thesis, as they model the crowd as individuals rather than a single fluid

flow.

9

www.manaraa.com

Chapter 3

Online RRT* and Online FMT*: Rapid Replanning with Dynamic Cost

Bryant Chandler and Michael A Goodrich. Online RRT* and Online FMT*: Rapid

Replanning with Dynamic Cost. In International Conference on Intelligent Robots and

Systems (IROS), 2017. IEEE, 2017. — Under Review

3.1 INTRODUCTION

There are many scenarios in which a robot might need to change goals in the middle of a task

or adapt to changes in its environment. The naive approach would be to plan an entirely new

path from scratch, but this is computationally expensive and does not take advantage of the

information already learned about the configuration space. Replanners exist that can adapt

for unexpected obstacles [1, 19, 25, 30], but they do not adapt to changing cost functions, and

do not support replanning to new end points. Another replanner [15] improves the path as it

travels, but it does not support changing cost functions or replanning to new end points. We

propose two algorithms, Online RRT* (ORRT*) and Online FMT* (OFMT*), that adjust

online as the environment and robot positions change. The algorithms facilitate (a) rapid

replanning when goals change, (b) adapting paths when the cost function or environment

changes, and (c) planning for multiple objectives; all while maintaining memory efficiency.

For this paper our distance unit will be the diameter of the robot. We assume that

a robot moves at a constant rate of 0.15 units per timestep. A map is 4900 square units

with randomly generated rectangular (non-overlapping) obstacles. Obstacle sizes range from

0.01 square units to almost as large as the map. We do not allow obstacles that take up the

10

www.manaraa.com

entire map, because it would become infeasible to plan paths. An example map can be seen

in Figure 3.7. Note that we use rectangular obstacles for simulation, but our algorithms can

function on an arbitrary occupancy grid.

ORRT* and OFMT* make two key additions to RRT*: (1) the location of the RRT*

root changes to match the robot’s location when the robot moves, and (2) new nodes are

sampled up to a predefined density, and after that point online sampling only samples and

rewires without adding new nodes.

We empirically validate the algorithms by comparing computation efficiency to FMT*,

A* on a visibility graph, and A* on a grid. Additionally, we empirically verify that the

algorithms can adapt to time-varying cost functions by comparing the resulting path cost to

an approximately optimal “ground truth” path computed using PRM*.

3.2 RELATED WORK

This section describes three areas of related research: discrete-based planning, sampling-based

planning, and replanning.

Discrete Planning. There are many algorithms in the literature for discrete multi-

objective path planning, one of the most notable being A* [33] which is an alternative to

Dijkstra’s algorithm [4] when the goal is unknown. These algorithms build a graph in a

configuration space that has been discretized into a grid with known available transitions

between grid cells. They then perform search on those graphs. This allows the algorithms to

operate quickly, but discretization reduces the likelihood of finding a truly optimal solution;

the algorithms might not find paths through narrow passages and the location of grid cells

might keep it from finding an optimal path. D* [30], AD* [25], and D* Lite [19] expand on

Dijkstra and A* to get dynamic graphs that can handle unexpected obstacles, but they suffer

from the same discretization issues.

Sampling-Based Planning. Sampling-based path planning addresses some of the

problems created by discretizing the configuration space. Algorithms like RRT [21] and PRM

11

www.manaraa.com

[16] randomly sample a continuous configuration space, allowing for more path options with

better performance than would be gained by simply increasing the resolution of discretization.

RRT builds a rapidly exploring tree from random sampling and a cost function that can

combine the multiple objectives. PRM builds a graph from randomly sampled points,

and then paths are queried using another algorithm such as A*. The time complexity for

constructing search trees is the same for both RRT and PRM, but RRT is O(n) in query

and space complexity whereas PRM is O(nlog(n)) in both query and space complexity; the

reduced query time and memory requirements generally make RRT the favorite of the two.

Additionally, RRT includes the ability to plan kinodynamically [23] (accounting for vehicle

dynamics and velocity).

RRT has been expanded to RRT* [14], which guarantees asymptotic optimality as

more points are sampled by rewiring the existing tree to get path cost reductions. An

advantage of RRT* is that a sub-optimal path can be found quickly with a sparse tree. For

the problems considered in this paper, a robot may be traversing a long distance and therefore

the algorithm must be capable of running for a long time. Consequently, quickly generating

a dense (and therefore closer to optimal) tree is more important than finding sub-optimal

solutions on a sparse tree. FMT* [13] was designed to generate dense trees; FMT* constructs

a tree with the same structure and optimality guarantees as RRT*, but samples all node

locations before beginning, and builds out from the start point densely.

Replanning. Several solutions have been developed to allow RRT* to function in

an online/anytime fashion. Anytime RRT* [15] takes advantage of the time it takes for a

robot to travel a path by improving the path during travel. It does this by pruning the

part of the tree that has already been traversed and continuing to sample. Anytime RRT*

does not meet the requirements of this paper because it destroys part of the tree as the

robot moves and our application benefits from reusing information that could be destroyed.

Another notable solution is RRTX [1], which switches the start and end points, so that the

end point is now fixed and finding optimal paths to all other points in the space. Thus, when

12

www.manaraa.com

the start point moves, it can simply use one of the other paths. When obstacle conditions

change, a cascading rewire is performed to update the tree. This is a reasonable approach to

being online, but it still requires one of the points to be fixed, which is not the case for our

application. We need to be able to move both the start and end point as the UAV moves,

and we are less concerned about unexpected obstacles.

3.3 APPROACH

This section details the Online RRT* (ORRT*) and Online FMT* (OFMT*) algorithms. A

tree-based path planning algorithm might plan a path as seen in Figure 3.1. The robot starts

at the red square, and plans a path to the purple circle, but when it reaches the green circle

the robot realizes that it actually wants to get to the blue point. The naive solution is to

make a completely new plan to get to the new goal, but that is computationally expensive.

If the robot can update the graph as it goes to take advantage of existing information, it will

afford a shorter replanning time when the goal changes.

Original Goal

New goal

Current Position

Figure 3.1: Need to replan to new goal after the robot has moved

3.3.1 Algorithm

ORRT* and OFMT* adapt to start and end point changes without needing to expensively

build an entirely new tree. Instead, ORRT* and OFMT* reuse the existing tree with minimal

new memory allocation and manageable processor utilization. In order to accomplish this,

13

www.manaraa.com

they depend on the asymptotic optimality guarantee of RRT*, which guarantees that the

paths in the tree will approach optimality as the number of sampled nodes increases. The

guarantee is possible, because every time a new node is added to the tree its neighbors are

rewired, thus improving the tree to better fit the cost function. If we can rewire and improve

the tree without linearly increasing the number of nodes, then we can adapt to a changing

environment and changing cost functions while maintaining constant memory usage. A side

benefit of using these tree-based algorithms is that the optimal path from the start point

to every other point in the configuration space is embedded in the tree, so we can rapidly

replan to new goals.

The problem is solved in three parts. The first part is online sampling, which varies

slightly between ORRT* and OFMT* during initialization. ORRT* (see Algorithm 1) adds

nodes to the tree until a “node add threshold” is reached. OFMT* (see Algorithm 2) samples

nodes up to the “node add threshold”, and then densely builds a tree with the sampled

nodes. Once tree building is complete, both algorithms begin online rewiring by sampling

and rewiring without adding nodes (see Algorithm 3). In both ORRT* and OFMT*, the

online sampling and online rewiring approach allows the tree to re-optimize when the start

point moves, or the cost function changes.

The second algorithm is start-point moving (see Algorithm 4), which (a) adds a node

at the new start point and then (b) rewires appropriate neighbors to that point.

The third algorithm is online pruning, which balances for the newly added node by

removing a leaf node in the vicinity of the new root.

The next three subsections discuss start-point moving, online sampling and rewiring,

and online pruning, respectively.

3.3.2 Start-Point Moving

RRT* and FMT* are able to handle changing the end point of the path, because they find

the asymptotically optimal path to all of the points in the configuration space. What they

14

www.manaraa.com

Algorithm 1 ORRT* Online Sampling

1: procedure SampleOnline
2: if number of nodes in tree < nodeAddThresh then
3: sample and add a node as per RRT*
4: else
5: RewireOnline()

Algorithm 2 OFMT* Online Sampling

1: procedure SampleOnline
2: if tree is not initialized then
3: randomly generate nodeAddThresh nodes
4: run FMT* to completion on sampled nodes
5: else
6: RewireOnline()

Algorithm 3 Online Rewiring

1: procedure RewireOnline
2: randPoint← randomly sample a point
3: neighbors← all nodes in radius of randPoint
4: nbr∗ ← best neighbor ∈ neighbors
5: update cost from nbr∗ to its parent
6: update cost for all children of nbr∗

7: for each nbr ∈ neighbors do
8: potCost← nbr∗.tCost+ cost(nbr∗, nbr)
9: if potCost < nbr.tCost then
10: rewire nbr to nbr∗
11: update cost for all children of nbr

15

www.manaraa.com

Algorithm 4 Move Start

1: procedure MoveStart
2: newRt← new node at newStartPoint
3: wire oldRoot to newRt
4: update cost for all children of oldRoot
5: neighbors← all nodes within a radius of newRt
6: for each nbr ∈ neighbors do
7: potCost = newRt.tCost+ cost(newRt, nbr)
8: if potCost < neighbor.tCost then
9: rewire neighbor to newRoot
10: update weights for all children of neighbor

11: for each nbr ∈ neighbors do
12: if numNodes > nodeAddThreshold then
13: if dist(newRt, nbr) < pruneDist then
14: if nbr.isLeaf then
15: remove nbr
16: else
17: RETURN

are not able to do is change the goal after the robot has started traveling; the end point

has to remain fixed. Because a robot’s goal can change after the robot starts traveling, the

replanning algorithm must be able to move the start point and update the tree. As illustrated

in Figure 3.2, ORRT* and OFMT* create a new node at the current location of the robot

and make that the parent of the original start node. All nodes in the neighborhood of the

new node are rewired subject to the constraint that a new edge does not intersect an obstacle.

Empirical results have been omitted in the interest of space. These omitted empirical results

are intuitive; the tree can be rewired quickly enough as long as the robot moves slowly (not

too far between time samples) and continuously. Jumps larger than the rewire neighborhood

would destroy the integrity of the tree.

3.3.3 Online Sampling and Rewiring

In order to re-optimize the tree after structure changes, the RRT* and FMT* algorithms

need to continue sampling points and rewiring the tree. Naively continuing to sample new

points in the configuration space does not work because the size of the tree continues to

16

www.manaraa.com

(a) Original tree with red square
as start point

(b) New blue start node as par-
ent of old red start node, with
neighbors in green

(c) Rewire green neighbors to
blue new start point

Figure 3.2: Moving start point

grow to the point that the algorithm becomes intractable in space and time. ORRT* and

OFMT* solve this problem by continuing to sample and rewire after we reach a chosen level

of saturation (the total number of nodes required to “cover” a configuration space), but not

adding new nodes to the tree. Instead of adding a new node to the tree, online rewiring

is performed. A new sample is used as the center of a nearest neighborhood search; nodes

within the neighborhood are rewired as shown in Figure 3.3. The lowest cost node from

the neighbors near the new sample is selected, and all other nodes in the neighborhood are

rewired to that best node as their parent, subject to the constraint that the new edge does

not intersect an obstacle. This keeps the execution time per iteration approximately the

same, if not less than it was when the algorithm reached the node add threshold. Memory

utilization stays fixed at the threshold level since no new nodes are being added, and each

iteration the tree improves to better fit the current cost function.

Online rewiring can refine the tree as long as the cost function is fixed because it will

always try to reduce cost. If the cost function is dynamic, however, the cost along a path

might need to increase to match the cost function. To support dynamic cost functions, we

add 2 steps once the best neighbor of the sampled point has been found, but before rewiring

other neighbors. First, we update the cost between the best neighbor and its parent. Second,

we recursively propagate the new cost to all children of the best neighbor. This does not

17

www.manaraa.com

immediately make the whole tree match the new cost function, but it does shift the overall

tree a little closer.

(a) Neighborhood of sampled
point

(b) Selecting best neighbor (c) Rewire other neighbors to
best neighbor if it reduces their
cost

Figure 3.3: Online rewiring

3.3.4 Online Pruning

By continually adding a new node when the robot moves, the start-point moving algorithm

creates a problem, as illustrated in Figure 3.4. Both ORRT* and OFMT* grow search trees

based on a fixed number of nodes. Adding a new node each time the robot moves means

that the number of nodes will increase linearly forever. Eventually, the number of nodes

will become intractable in time and space. We could solve this problem by occasionally

pruning the tree, but that would have an effect similar to how a garbage collector functions

in software; it would have to pause execution occasionally in order to prune extra nodes.

Instead of a “pause and prune” approach, we prune a single leaf node that is very close to the

new root so that distant parts of the tree are not affected. This keeps the tree at a constant

number of nodes without leaving holes (which would occur if we pruned branches or nodes

far from the root). Because of the short distance, there is a reasonable chance that the leaf

node removed will be the old root, but that is not required.

18

www.manaraa.com

Figure 3.4: Moving the start point adds nodes, which eventually becomes a significant problem

3.4 VALIDATION

3.4.1 Computational Efficiency: Algorithm Comparison

This section empirically compares the computational efficiency of ORRT* and OFMT* to

A* over a visibility graph, PRM*, and A* over a grid discretization. Results are shown in

Figure 3.5 for all algorithms, as well as for the top three algorithms, namely ORRT*, OFMT*,

and A* on a visibility graph. Results are computed for a 30 second simulation with frequent

replanning over 50 randomly generated maps. Results use a shortest-path problem, and the

optimal path is generated using A* running on a visibility graph (which is guaranteed to find

the true shortest path). Each algorithm was simulated with the start point moving at 30

Hz, and replanning frequencies were varied from 1 to 250 Hz. The time for each algorithm

to compute a new path was computed. Results are reported as the percentage of the 30

seconds available (the duration of the simulation) that was used for planning; higher values

indicate that the algorithm is using more of the available time. Algorithms were allowed to

use more than the theoretically available time, that is, they could use more than 1/replan

frequency seconds each time they replanned, to demonstrate any inefficiency. All simulations

were performed on a desktop workstation with an Intel Core i7-6700 3.4 GHz CPU and 15.6

GB DDR4 RAM.

19

www.manaraa.com

0 50 100 150 200 250

replans per second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

%
 c

o
m

p
u
ti

n
g
 t

im
e
 u

s
e
d

OFMT*

PRM*

A* w/ Visibility Graph

A* w/ Grid

ORRT*

(a) All tested algorithms

0 50 100 150 200 250

replans per second

0.000

0.005

0.010

0.015

0.020

0.025

0.030

%
 c

o
m

p
u
ti

n
g
 t

im
e
 u

s
e
d

A* w/ Visibility Graph

OFMT*

ORRT*

(b) Three best algorithms

Figure 3.5: Percentage of 30 s run time used for path computation

As can be observed in Figure 3.5, PRM* and A* with a grid quickly began to perform

very poorly with relatively low replan frequencies and reached far over 100% of the available

time. A* with a visibility graph performed the best, despite the fact that it grows linearly

with replans per second. Note, however, that A* over a visibility graph only works for

shortest-path problems; additionally, as the map becomes more complex the visibility graph

becomes more complex and therefore A*, which has an exponential worst-case computational

complexity, becomes less efficient. ORRT* and OFMT* had relatively constant results with

a low percentage of compute time being used. They continue to take the same amount of

computation time as replanning becomes very frequent, because they adjust the tree as the

start point moves, and the optimal path to any new end point is embedded in the tree.

3.4.2 Memory Efficiency

The memory efficiency of ORRT* and OFMT* is best understood by treating a node as a unit

of memory. RRT* would add a new node every iteration, which equates to memory usage

increasing linearly. ORRT*, by contrast, adds one node per iteration until the threshold is

reached. Similarly, OFMT* builds a tree to a predetermined number of nodes. At that point,

the number of nodes remains constant at the threshold for both algorithms as long as the

pruning radius is set appropriately.

20

www.manaraa.com

3.4.3 Online Pruning

This section provides evidence that the moving start point algorithm allows a robot to move

while still finding optimal paths. The algorithm was executed for 33 minutes and measured

the particle entropy of the nodes in our tree. Particle entropy is a measure that helps

determine the uniformity of the distribution of nodes. A high entropy value indicates that

the distribution is uniform, and therefore the asymptotic optimality guarantees of RRT* hold.

We performed the experiment for several different pruning radii as seen in Figure 3.6, and

found that 0.7 units was the best radius in our scenario. It can be observed that a radius

of 0.5 units had a higher entropy, but that radius does not prune well enough to keep the

number of nodes from growing.

Future work should consider how best to select the pruning radius. One potentially

important relationship is the ratio of velocity to prune radius, which determines whether or

not the old root will fall within the prune radius. The ratio in the simulations above was

empirically and subjectively set to 3/14, but better ratios might exist for other environments

and other algorithm parameters. A second important parameter which might have influence

on the ideal pruning radius is the sampling density. Sampling density can affect the ideal

pruning radius because it influences the number of nodes that might fall within a given

radius.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

radius

12.8

12.9

13.0

13.1

13.2

13.3

13.4

13.5

13.6

e
n
tr
o
p
y

fe
a
s
ib
le

in
fe
a
s
ib
le

(a) Entropy as it relates to pruning radius

0 500 1000 1500 2000

time (s)

12.9

13.0

13.1

13.2

13.3

13.4

13.5

13.6

13.7

e
n
tr

o
p
y

radius=0.50

radius=0.60

radius=0.70

radius=2.00

radius=3.90

(b) Entropy over time with various pruning
radii

Figure 3.6: Online pruning

21

www.manaraa.com

3.4.4 Support for Multiple Objectives

Figure 3.5 illustrated that the only algorithm which might be faster than ORRT* and OFMT*

for rapid replanning is A* on a visibility graph. Importantly, A* on a visibility graph only

works when the objective function is shortest path. Many scenarios require a more complex

cost function, and therefore need to use a different algorithm. When the objective functions

have structures that can be exploited, similar to how a visibility graph extracts shortest path

structures, then objective-specific efficient algorithms may be possible, but it we claim that

ORRT* and OFMT* can work for a wide range of objectives.

To provide evidence for this claim, Figure 3.7 presents an an example of OFMT* using

a cost function that seeks to avoid being “seen” by the pink and blue circles in the world.

The selected path is obviously not the shortest path, and the tree shows a lot of curvature as

it tries to avoid the pink and blue circles. The path also tends to maximize the time that

the robot is hidden behind obstacles and, when not hidden behind obstacles, try to be far

from the pink and blue circles to make the probability of being seen smaller. Space does not

allow a full presentation of how many objectives are compatible with the algorithms, but

note that simulation results generate subjectively acceptable paths for many convex blends

of the shortest path objective and the “stealth” objective of avoiding being seen.

3.4.5 Time-Varying Cost

In many real-world scenarios, assuming a fixed cost function is unrealistic. ORRT* and

OFMT* are capable of adjusting to changes in the cost function as long as those changes

are gradual. Future work needs to characterize what constitutes a “gradual” change. To

provide evidence in support of the claim that the algorithms adjust to gradual changes in

cost functions, we simulated with fixed start and end points on 4 different maps. The cost

function was based on the “stealth” objective of hiding from moving enemies. Cost is high

for points where enemies can see the robot and are close to it. We allow the enemies to move

over time, which gives us a time-varying cost function.

22

www.manaraa.com

Figure 3.7: A tree and path created using a cost function that attempts to avoid the pink
and blue circles

For 5 randomly generated scenarios, ground truth optimal paths at 14 time steps

over a 30 second trial were found using PRM*. For ORRT* and OFMT*, we paused the

simulation at the same 14 time steps and ran the algorithms for an additional 10000 iterations.

Figure 3.8 illustrates how ORRT* and OFMT* adapt their paths in such a way that path

costs approach the optimal cost after the cost functions change. The trend toward decreasing

absolute difference between the true optimal and the adapting path illustrate that ORRT*

and OFMT* can adjust for time-varying cost and be used in an anytime fashion; given faster

processors they would be able to compute fully optimal paths in real-time. Further research

is required to assess how the algorithms perform with different cost functions as computation

of cost can be a significant computational load.

23

www.manaraa.com

0 2000 4000 6000 8000 10000

additional iterations

0.05

0.10

0.15

0.20

0.25

0.30

%
 a

b
s
o
lu

te
 d

if
fe

re
n
c
e
 f

ro
m

 t
ru

th
 c

o
s
t

Map 0

Map 1

Map 2

Map 3

(a) ORRT*

0 2000 4000 6000 8000 10000

additional iterations

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

%
 a

b
s
o
lu

te
 d

if
fe

re
n
c
e
 f

ro
m

 t
ru

th
 c

o
s
t

Map 0

Map 1

Map 2

Map 3

(b) OFMT*

Figure 3.8: Anytime percent absolute difference from truth path cost with time-varying cost
function

3.5 SUMMARY AND FUTURE WORK

This paper illustrates that the ORRT* and OFMT* algorithms rapidly replan in dynamic

environments. Replanning to new end points occurs in real-time, and computational efficiency

is good enough to scale to rapid replan frequencies. Additionally, the algorithms can adjust

to gradual time-varying objective functions in an anytime fashion. This allows for scenarios,

for example, where the cost depends on the positions of other moving agents.

The strength of ORRT* is to rapidly replan for new end points and adapting to

changing cost functions, but that might not be its only application. We plan an extension to

make ORRT* work for very large worlds by applying a sliding window to the planned tree.

This approach would delete nodes that fall outside of the window due to movement, and

add new nodes when new areas are exposed. The same framework would allow for handling

moving obstacles.

All results in this paper were gathered assuming 2D worlds, but the same algorithms

theoretically work for 3D configuration spaces. A possible limitation is that adding another

dimension would increase the number of nodes required and increase the amount of time

24

www.manaraa.com

required to compute cost functions. Future work should evaluate how well these algorithms

work in 3D.

Further future work needs to be done with the online pruning radius. The simulations

showed that the ideal pruning radius depends on decisions about other algorithm parameters

such as maximum segment length and UAV travel velocity. Future work would involve

running many more simulations in this combinatorial space, and analyzing the relationship

between the various parameters to establish rules of thumb.

25

www.manaraa.com

Chapter 4

End-Point Selection

Chapter 3 presented two path-planning algorithms, ORRT* and OFMT*, that afford

rapid replanning to new end-points while the UAV is moving. Such algorithms are necessary

because the end-point selection method presented in this chapter executes at every timestep,

and the selected end-point can vary dramatically between timesteps.

This chapter presents an algorithm that selects an end-point based on the expected

utility for having one or more waldos in frame. This allows the UAV to follow a subset from

a large group of waldos with a prioritized approach rather than naively following only the

most important waldo.

4.1 Selection Method

The end-point of the ORRT* or OFMT* should be a location that maximizes the important

waldos that can be seen at that location. A well-chosen end-point allows the vision algorithm

to more effectively and accurately track waldos, and should attempt to preempt occlusion.

The first step in choosing an end-point is to discretize the space into a grid of bins.

For this thesis, the importance of a waldo is randomly selected from integer range {0, 1, 2}

when the simulation is initialized. In practice, these values would be assigned by a human

operator and the range of importance values could be increased to provide more control.

The important thing is that the zero-value represents being unimportant and the two-value

represents greatest importance. A value is assigned to each poential search bin by adding the

importance scores for each waldo that can be seen from the center of the grid cell.

26

www.manaraa.com

(a) Waldos as green circles with a letter as
a label, and number as importance

(b) Scores tallied by waldo label, with chosen
end cell in orange

Figure 4.1: End-point selection

The score for the waldos is scaled by distance between the waldo and the UAV, as

encoded in Equation 4.1.

score = max(0, importance ∗ (viewRadius− dist(waldoLocation, cell))) (4.1)

This equation creates a bin score with a peak at predicted waldo location, scaled by importance,

and decreasing from the center to a maximum distance away (the view radius). The max

function assures that the values are greater than zero. We assume that the UAV cannot see

through walls, so the visibility region is computed for each possible UAV end-point. Within

each cell, we assume that detection probability is uniform, meaning that the distance-weighted

probability is measured from center of one cell to the center of another.

Weighting a waldo’s importance by the probability of seeing it (the distance scaling)

produces a cell value that represents the expected utility of the UAV being located in the

given cell. The cell with the maximum expected utility is selected as the end-point for

path-planning.

27

www.manaraa.com

To improve the end-point selection we not only accumulate votes for the current

location of waldos, we use what we know about their historic movement to predict future

locations and accumulate votes for those locations. We discuss the algorithm for predicting

locations in the next section.

4.2 Future Prediction

(a) Center (b) Constant velocity (c) Directed random walk

Figure 4.2: Prediction methods

The three prediction methods are illustrated in Figure 4.2; the red circle represents

the current location of the waldo, and the green circle represents the predicted future location

of the waldo. The naive prediction method (Figure 4.2a) is to assume that the Waldo will

stop at its current location. Hereafter, this method will be referred to as “center”.

The second prediction method (Figure 4.2b) is a moving average filter of frame to

frame velocities. We can use the velocity vector from the moving average filter to predict into

the future assuming that the Waldo travels at constant velocity. This method will likely fail

for long look-ahead because a Waldo is unlikely to have constant velocity for a long period of

time. This method will be referred to hereafter as “constant velocity”.

The final prediction method (Figure 4.2c) uses the heading ψ and magnitude Kv of

the velocity vector gathered from moving average filter to constrain a random walk. At each

prediction time step the x and y positions move at a rate of Kv in the direction ψ as seen in

28

www.manaraa.com

Equations 4.2 and 4.3.

x(t+ 1) = x(t) +Kv∆t cos(ψ(t)) (4.2)

y(t+ 1) = y(t) +Kv∆t sin(ψ(t)) (4.3)

ψ(t+ 1) = ψ(t) + η where η ∼ U(−1, 1) (4.4)

The value of ψ(t+ 1) is calculated in Equation 4.4 by adding the value at ψ(t) to a random

angle selected from a uniform distribution, η ∼ U(−1, 1), where the unit is radians. The

reasoning behind using a directed random walk is that it might be more helpful in cluttered

environments because it allows a prediction that goes around a corner without allowing a

waldo to double back on itself. This method will be referred to hereafter as “directed random

walk”.

4.3 Results

To compare the methods for predicting future waldo location, simulations were conducted

with several different prediction method combinations over different numbers of obstacles.

The parameters used can be found in Table 4.1 in addition to the description provided in this

paragraph. To account for variance, 120 trials were performed at each obstacle density level

with each trial lasting 3 minutes. The obstacle densities where 5, 10, 15, and 20 obstacles.

For each map the obstacles were placed randomly with the constraint that no obstacles could

overlap. Scores were recorded at 30 Hz, with a score being the sum of the importance values

for all waldos within the viewing radius of the UAV. The importance values of the waldos were

0 for unimportant, 1 for semi-important, and 2 for very important. Each of the prediction

methods was tested on the same 120 trials with recorded obstacles and waldo positions.

For all development and experiments, waldo paths were randomly simulated. This was

accomplished using a unique RRT* planner for each waldo. The planner selects a random

end-point and samples until a path is found, but doesn’t continue refining the path after

29

www.manaraa.com

Obstacle Densities 5, 10, 15, 20
Trials per Density 120
Trial Duration 3 minutes
Scoring Frequency 30 Hz
Importance Values 0, 1, 2

Table 4.1: Parameters for endpoint selection simulations

that point. The waldo then travels along the path at constant velocity. When the end-point

is reached, the process is repeated. This approach provides purposeful waldo movement,

without having the paths be too direct. We have observed that the simulated waldos seem to

have realistic human movement, but future work should include tests with paths sampled

from real humans.

In Figure 4.3 we see the average score over the 120 trials on the y-axis, and the

number of obstacles on the x-axis. Each line represents the results for a different combination

of prediction methods. Observe that the best results were derived using a combination of

the current waldo center and the constant velocity predicted location with a two second

look-ahead. Also observe that the three prediction methods with the lowest scores are the

ones which include a directed random walk, likely indicating that a directed random walk is

not a useful prediction method given the “purposeful” way that the waldos planned their

paths. Finally, observe that the remaining prediction methods where nearly indistinguishable.

Future work should include exploring longer look-ahead, as these trials were all

conducted with a two second look-ahead. A longer look-ahead might change the value of

the various prediction methods. Other future work should include methods for modeling the

purposes used by the waldos to plan paths.

30

www.manaraa.com

5 10 15 20

obstacles

14000

15000

16000

17000

18000

19000

20000

21000

22000

a
v
e
ra

g
e
 s

c
o
re

[center]

[constant velocity]

[directed random walk]

[center, constant velocity]

[center, directed random walk]

[center, constant velocity, directed random walk]

Figure 4.3: End-point selection scored for different prediction methods

31

www.manaraa.com

Chapter 5

Cost Function

Chapter 3 and Chapter 4 presented algorithms that can rapidly replan to end-points

that attempt to maximize the number of waldos within the viewing radius of the UAV. A

limitation of the algorithms in the previous chapters is that they do no consider how much

information is gained while the UAV moves along its path to the end-point. Instead, the

end-point is chosen to maximize the expected utility of seeing important waldos once the

end-point is reached, and the path is chosen that minimizes some objective function so that

the path to reach the end-point is optimal. This chapter addresses this limitation by designing

a cost function that enables the UAV to increase information gain while traveling to the

planned end-points.

We hypothesized that maximizing visible area during travel will minimize the number

of places that the waldo could “go to hide”, that is, the number of places where the waldo

could go in the near future and be be occluded from the UAV. Minimizing the places to hide

would reduce the chance of losing an important waldo being tracked. As the results will

demonstrate, a cost function that maximizes information game produces intuitive behaviors

such as swinging wide at corners so the waldo doesn’t abruptly become occluded when it

turns a corner. We design a cost function that has a low value for areas that have high

visibility and a high value for areas with low visibility. Exact computation of this cost is

expensive, so we present a technique to approximate travel cost, thus making the approach

computationally feasible.

32

www.manaraa.com

5.1 Maximizing Visible Area

The polygon that is visible from any point in a 2D map can be found using many different

ray-tracing techniques. A ray sweeping visibility polygon algorithm [28] is used in this thesis

because it is relatively efficient and forms a simple and accurate polygon. Having a simple

polygon is advantageous because it is easy to compute the area of such a polygon, and having

an accurate polygon will lead to a cost function with low noise. Given the area of the polygon,

the unseen open area can be computed, denoted by u(i), that tells us how much of the map

isn’t visible from point i, excluding the space taken up by obstacles.

Equation 5.1 calculates the unseen open area u for point i.

u(i) = area(map)− totalObstacleArea− area(visiblePolygon(i)) (5.1)

The components are as follows: area(map) is the total area of the map, area(visiblePolygon(i))

finds the polygon visible from point i and computes its area, and totalObstacleArea is the to-

tal area occupied by obstacles. Subtracting totalObstacleArea from area(map) gives the open

area of the map not occupied by obstacles. Finally, area(visiblePolygon(i)) is subtracted

from the open area, leaving the area that isn’t visible from point i.

The unseen open area u is used to influence the travel cost between nodes. The most

accurate measure of the travel cost would be to integrate the unseen area at very small

intervals along each edge of the path. This, however, is very slow and is compounded by

the fact that we have to compute a travel cost for every edge we consider adding, not just

the edges we actually add. As a solution to this problem, the unseen area across the edge is

approximated by (1) computing the average of the unseen area u at the end-points of the

edge and (2 multiplying that average by the length of the edge. Approximating the travel

cost allows the use of dynamic programming to store and reuse the unseen area at each node.

33

www.manaraa.com

The approach is similar to numerical integration using the midpoint method. The resulting

equation for approximating the edge cost is given by

eu(i, j) =
u(i) + u(j)

2
dist(i, j) (5.2)

The proposed approximation certainly has loss, but it is made more reasonable by the

fact that segments are likely to be very short for reasonable sampling parameters for ORRT*

and OFMT*. A short segment length allows us to assume that the rate of change between the

two points is close to constant, thus making an averaged approximation reasonably accurate.

Given the random sampling associated with these planners, a scenario can be imagined

where the segments are very long with significant cost fluctuations between them. If the

random sampling produced long edges, the approximation in Equation (5.2) would almost

certainly fail. Fortunately, sampling densities can be controlled, making it more likely that

edge segments are reasonably short.

5.2 Results

We hypothesized that using unseen area in the cost function will reduce the chance that

the UAV will lose tracking of a waldo due to occlusion. To test this hypothesis, we run the

same simulation that we used in Section 4.3, but we only use the high-performing prediction

method that combines center, constant velocity, and directed random walk. The table of

parameters has been repeated in Table 5.1 for the convenience of the reader. We simulated

two cost functions, shortest path and unseen open area, on the same scenarios, and compared

the total score for each scenario.

Obstacle Densities 5, 10, 15, 20
Trials per Density 120
Trial Duration 3 minutes
Scoring Frequency 30 Hz
Importance Values 0, 1, 2

Table 5.1: Parameters for cost function simulations

34

www.manaraa.com

Figure 5.1 shows the average score over the 120 trials on the y-axis and the number of

obstacles on the x-axis. We see that shortest path seems to do better for all but the lowest

number of obstacles, but the actual score differences are very small. This might be due to

the fact that unseen area doesn’t have a strong influence on the path shape, thus the paths

computed are almost the same as the shortest path. Based on these results, we have to

conclude that the method proposed in this chapter didn’t accomplish its purpose. Future

work should explore other cost functions which can provide a path shape which provides

more incentive for the robot to maximize what it can see.

5 10 15 20

obstacles

20000

20200

20400

20600

20800

21000

21200

21400

21600

a
v
e
ra

g
e
 s

c
o
re

shortest path

unseen area

Figure 5.1: Scores with different cost functions

35

www.manaraa.com

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Chapter 3 demonstrated that ORRT* and OFMT* can replan at a rate much faster than

the 30 Hz required in the specification for the application. Chapter 4 demonstrated that the

best endpoint selection used a combination of the center and constant velocity predictions.

Therefore, we conclude that the combination of the algorithms in this thesis does work for

following waldos. It rapidly replans in real-time using only a small portion of the available

compute time, and the end-point selection method selects subjectively reasonable end-points.

After observing the waldo following algorithm in simulations, we hypothesize that the

same results might have be accomplished with a short horizon A* or PRM* planner rather

than OFMT* or ORRT*. Such a switch is likely possible for a few reasons: (a) the lookahead

is short so it is possible to plan for a short horizon, (b) planned paths almost never vary from

shortest path for the objective functions used in this thesis, and (c) replanning occurs at 30

Hz and both A* and PRM* are capable of replanning at that rate as can be observed in

Figure 3.5. The strengths of ORRT* and OFMT* for rapid replanning might be showcased

more thoroughly if the waldo prediction lookahead was significantly increased, or if a different

cost function that varied significantly from shortest path was employed.

OFMT* and ORRT* were useful in solving the problem presented in this thesis, but

there are additional problems for which they are likely to be very useful. One example is

for time-varying cost functions as presented in Chapter 3. Many real world scenarios do not

allow a static cost assumption, such as worlds with partially known environments, moving

36

www.manaraa.com

obstacles, and moving enemies. The conditions of the world might change at any time, and

using a planner like ORRT* or OFMT* allows the UAV to rapidly adjust its plan to suit

the conditions. While we have shown that adjusting for dynamic cost works in an anytime

fashion, current hardware limits us from reaching real-time performance. We expect that near

future hardware will be capable of pushing OFMT* and ORRT* into real-time performance.

OFMT* is currently being used in a user study that aims evaluate the nature of user intent

in a planning problem with dynamic costs. The ability of OFMT* to be used in a user study

demonstrates its utility in a problem that requires adaption to dynamic cost while the robot

is moving. Future work should explore applications of time-varying cost more fully.

6.2 Future Work

In Chapter 4, results were acceptable for the prediction methods with a 2-second lookahead,

but there is room for expansion. Future work should explore additional prediction methods,

including some of the models discussed in Section 2.5, as well taking user input about how a

waldo might move. Future work should also explore longer look-ahead to better reduce the

chance of tracking loss, with the additional benefit that a longer look-ahead would more fully

utilize the benefits of ORRT* and OFMT*. Finally, future work should take a deeper dive

into the outcomes in more cluttered environments with more unique object layouts.

We hypothesized that using a cost function based on unseen area might help the UAV

to plan paths which swing wide at corners and increase the time it would take for a waldo to

become occluded. Empirical results show that the proposed cost function does not improve

the UAVs ability to keep waldos in frame, but it still seems that behavior such as swinging

wide at corners should improve tracking. Future work should include experiments with a

wider range of cost functions that can encode this type of reasoning. One possibility is to

measure the distance to obstacle borders and penalize for being too close to obstacles, thus

encouraging paths that are centered between obstacles.

37

www.manaraa.com

The chapter on ORRT* and OFMT* discusses the use of those algorithms in 3D worlds.

3D worlds allow the UAV to make decisions about changing altitude to increase or decrease

view radius, and it also provides the option to fly over buildings. Such an environment would

be much more broadly applicable than assuming urban canyons with buildings tall enough to

disallow flyover.

The algorithms that we have developed should generalize for use with any Multi-Target

Tracking algorithm as long as it tracks in an anytime fashion. Future work should include

validation of the claim that the approach presented in this thesis works with Recursive-

RANSAC and other major MTT algorithms.

38

www.manaraa.com

References

[1] Joshua Bialkowski, Michael Otte, Sertac Karaman, and Emilio Frazzoli. Efficient Collision

Checking in Sampling-based Motion Planning via Safety Certificates. The International

Journal of Robotics Research, 26:212–240, 2010.

[2] Michael S Branicky, Steven M LaValle, Kari Olson, and Libo Yang. Quasi-randomized

path planning. In Proceedings of the IEEE International Conference on Robotics and

Automation (Cat. No.01CH37164), volume 2, pages 1481–1487, 2001. doi: 10.1109/

ROBOT.2001.932820.

[3] Kevin Cook, Everett Bryan, Huili Yu, He Bai, Kevin Seppi, and Randal Beard. Intelligent

cooperative control for urban tracking. Journal of Intelligent & Robotic Systems, 74

(1-2):251, 2014.

[4] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[5] Stephen R Dixon and Christopher D Wickens. Control of multiple-UAVs: A workload

analysis. Technical report, DTIC Document, 2003.

[6] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning: A review.

IEEE Access, 2:56–77, 2014.

[7] Thomas E Fortmann, Yaakov Bar-Shalom, and Molly Scheffe. Multi-target tracking

using joint probabilistic data association. In Proceedings of the 19th IEEE Conference

on Decision and Control including the Symposium on Adaptive Processes, pages 807–812,

Dec 1980. doi: 10.1109/CDC.1980.271915.

[8] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed RRT*:

Optimal sampling-based path planning focused via direct sampling of an admissible

ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2997–3004, Sept 2014. doi: 10.1109/IROS.2014.

6942976.

39

www.manaraa.com

[9] Christopher Geyer. Active target search from UAVs in urban environments. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 2366–2371,

May 2008. doi: 10.1109/ROBOT.2008.4543567.

[10] Jason K Howlett, Timothy W McLain, and Michael A Goodrich. Learning Real-Time A*

path planner for unmanned air vehicle target sensing. Journal of Aerospace Computing,

Information, and Communication, 3(3):108–122, 2006.

[11] Toru Ishida and Richard E Korf. Moving-target search: A real-time search for changing

goals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):609–619,

1995.

[12] Lucas Janson, Brian Ichter, and Marco Pavone. Deterministic Sampling-Based Motion

Planning: Optimality, Complexity, and Performance. arXiv preprint arXiv:1505.00023,

2015.

[13] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching

tree: A fast marching sampling-based method for optimal motion planning in many

dimensions. The International Journal of Robotics Research, 34(7):883–921, 2015.

[14] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[15] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth Teller.

Anytime Motion Planning using the RRT*. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 1478–1483, May 2011. doi: 10.1109/

ICRA.2011.5980479.

[16] Lydia E Kavraki, Petr Svestka, Jean Claude Latombe, and Mark H Overmars. Prob-

abilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE

transactions on Robotics and Automation, 12(4):566–580, 1996.

[17] Jongrae Kim and John L Crassidis. UAV path planning for maximum visibility of ground

targets in an urban area. In Proceedings of the 13th Conference on Information Fusion

(FUSION), pages 1–7. IEEE, 2010.

[18] Jongrae Kim and Yoonsoo Kim. Moving ground target tracking in dense obstacle areas

using UAVs. IFAC Proceedings Volumes, 41(2):8552–8557, 2008.

[19] Sven Koenig and Maxim Likhachev. D*Lite. In Proceedings of the Eighteenth National

Conference on Artificial Intelligence, pages 476–483, Menlo Park, CA, USA, 2002.

American Association for Artificial Intelligence. ISBN 0-262-51129-0.

40

www.manaraa.com

[20] Richard E Korf. Real-time heuristic search. Artificial intelligence, 42(2-3):189–211, 1990.

[21] Steven M Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.

Technical report, Computer Science Department, Iowa State University, 1998.

[22] Steven M LaValle. Planning Algorithms, chapter 5. Cambridge University Press, 2006.

[23] Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. The

International Journal of Robotics Research, 20(5):378–400, 2001.

[24] Steven M LaValle, Héctor H González-Baňos, Craig Becker, and Jean-Claude Latombe.

Motion strategies for maintaining visibility of a moving target. In Proceedings of

International Conference on Robotics and Automation, volume 1, pages 731–736, Apr

1997. doi: 10.1109/ROBOT.1997.620122.

[25] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun.

Anytime search in dynamic graphs. Artificial Intelligence, 172(14):1613–1643, 2008.

[26] Peter C Niedfeldt and Randal W Beard. Multiple target tracking using recursive

RANSAC. In Proceedings of the American Control Conference (ACC), pages 3393–3398.

IEEE, 2014.

[27] Songhwai Oh, Stuart Russell, and Shankar Sastry. Markov chain Monte Carlo data

association for multi-target tracking. IEEE Transactions on Automatic Control, 54(3):

481–497, 2009.

[28] Amit Patel. 2D Visibility from Red Blob Games.

http://www.redblobgames.com/articles/visibility/, Jun 2012. [Online; accessed

29-Jul-2016].

[29] Donald B Reid. An algorithm for tracking multiple targets. IEEE Transactions on

Automatic Control, 24(6):843–854, Dec 1979. ISSN 0018-9286. doi: 10.1109/TAC.1979.

1102177.

[30] Anthony Stentz. Optimal and efficient path planning for partially-known environments.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages

3310–3317, May 1994. doi: 10.1109/ROBOT.1994.351061.

[31] Konstantinos I Tsianos, Ioan A Sucan, and Lydia E Kavraki. Sampling-based robot

motion planning: Towards realistic applications. Computer Science Review, 1(1):2–11,

2007.

41

www.manaraa.com

[32] Ba-Ngu Vo and Wing-Kin Ma. The Gaussian Mixture Probability Hypothesis Density

Filter. IEEE Transactions on Signal Processing, 54(11):4091–4104, Nov 2006. ISSN

1053-587X. doi: 10.1109/TSP.2006.881190.

[33] Wikipedia. A* search algorithm — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=719205928, 2016.

[Online; accessed 18-May-2016].

[34] Huili Yu, Randal W Beard, Matthew Argyle, and Caleb Chamberlain. Probabilistic path

planning for cooperative target tracking using aerial and ground vehicles. In Proceedings

of the American Control Conference, pages 4673–4678. IEEE, 2011.

[35] Suiping Zhou, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Yoke Hean Low, Feng Tian,

Victor Su-Han Tay, Darren Wee Sze Ong, and Benjamin D Hamilton. Crowd modeling

and simulation technologies. ACM Transactions on Modeling and Computer Simulation

(TOMACS), 20(4):20, 2010.

42

https://en.wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=719205928
https://en.wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=719205928

	Brigham Young University
	BYU ScholarsArchive
	2017-05-01

	Robust Object Tracking: A Path-Planning Approach
	Bryant Eldon Chandler
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Discrete Planning
	2.2 UAV Motion Planning
	2.3 Sampling-Based Planning
	2.4 Visual Multi-Target Tracking
	2.5 Waldo Following

	3 Online RRT* and Online FMT*: Rapid Replanning with Dynamic Cost
	3.1 INTRODUCTION
	3.2 RELATED WORK
	3.3 APPROACH
	3.3.1 Algorithm
	3.3.2 Start-Point Moving
	3.3.3 Online Sampling and Rewiring
	3.3.4 Online Pruning

	3.4 VALIDATION
	3.4.1 Computational Efficiency: Algorithm Comparison
	3.4.2 Memory Efficiency
	3.4.3 Online Pruning
	3.4.4 Support for Multiple Objectives
	3.4.5 Time-Varying Cost

	3.5 SUMMARY AND FUTURE WORK

	4 End-Point Selection
	4.1 Selection Method
	4.2 Future Prediction
	4.3 Results

	5 Cost Function
	5.1 Maximizing Visible Area
	5.2 Results

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

